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This work presents numerical and experimental investigations of the application of a

periodic array of resistive–inductive (RL) shunted piezoelectric patches for the

attenuation of broadband noise radiated by a flexible plate in an enclosed cavity. A

4�4 lay-out of piezoelectric patches is bonded to the surface of a rectangular plate fully

single RL circuit, and all shunting circuits are tuned at the same frequency. The response

of the resulting periodic structure is characterized by frequency bandgaps where

vibrations and associated noise are strongly attenuated. The location and extent of

induced bandgaps are predicted by the application of Bloch theorem on a unit cell of the

periodic assembly, and they are controlled by proper selection of the shunting circuit

impedance. A coupled piezo-structural-acoustic finite element model is developed to

evaluate the noise reduction performance. Strong attenuation of multiple panel-

controlled modes is observed over broad frequency bands. The proposed concept is

tested on an aluminum plate mounted in a wooden box and driven by a shaker.

Experimental results are presented in terms of pressure responses recorded using a grid

of microphones placed inside the acoustic box.

& 2010 Elsevier Ltd. All rights reserved.
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1. Introduction

Over the last decades, research on effective methods for suppressing cabin interior noise and vibration level has been
very active in automobile and aircraft industries [1,2]. Radiated noise in acoustic enclosures is due to the coupling between
vibration of the flexible boundaries and motion of the interior fluid. Increasing customer demand and awareness for
improved comfort environments have prompted researchers into studying the fundamental phenomena which govern the
structural-acoustic coupling and investigating innovative techniques to reduce interior noise levels. Lightweight solutions
are needed which can provide global broadband noise control inside the cabin without compromising vehicle performance
and efficiency. It is known that classical passive solutions such as acoustic blankets add considerable weight and are
effective only at high frequencies.

About 20 years ago, Fuller and his co-workers [3,4] started to investigate the possibility of reducing aircraft interior
noise by actively controlling the fuselage vibration through mechanical actuators. This approach, denoted as active
structural acoustic control, has received increasing attention in the academic community, and promising results have been
reported using lightweight smart devices such as inertial and piezoelectric actuators [5–7]. However, it is generally
acknowledged that there is still a gap to be covered to make this technology practical due to global performance, instability
issues, complexity of the controller and cost of the system.

Piezoelectric shunt damping is an attractive technique for control of vibrating structures which offers a simpler and
more cost-effective solution to actively controlled piezos. Contrary to active control strategies, the key element is a passive
electrical network directly connected to the electrodes of the piezoelectric device. As such, no error sensing device is
required and the stability of the coupled system is guaranteed. An elegant formulation of passive shunting was first
proposed by Hagood and Von Flotow [8] and is still most commonly used. The study showed how a piezoelectric material
shunted through a series RL circuit, i.e., a resonant shunt, exhibits a behavior very similar to the well known mechanical
tuned vibration absorber. A resonant shunt is simple to design and it offers effective damping in the vicinity of a selected
mode of the underlying structure.

After the initial introduction of single-mode resonant shunts, more complex shunting circuits have been investigated
for suppressing multiple structural modes. Hollkamp [9] was able to suppress two modes of a cantilever beam using a
system of RLC circuits connected in parallel. The whole circuit requires as many parallel branches as there are modes to be
controlled. Since no closed-form tuning solution is available for determining the component values, the method relies on
the numerical optimization of a nonlinear objective function fully parametrized by all of the circuit elements. As an
alternative, Wu [10] proposed the use of parallel RL shunts, each targeting an individual mode. Current-blocking LC
networks are introduced in each parallel branch to reduce cross-coupling and achieve multiple resonances at the desired
frequencies. Specifically, each LC circuit is tuned to the frequency of an adjacent mode in order to decouple the branches.
The complexity of the circuit topology greatly increases as the number of modes to be simultaneously damped increases.
More recently, the current-flowing concept was presented by Behrens et al. [11]. Compared to current-blocking schemes,
the current-flowing method is simpler to tune and involves less electrical components, however it appears less effective for
densely spaced modes.

In addition to the RL-based shunting techniques described thus far, other different strategies are available for
multimode vibration reduction with piezoelectric shunts. The most common method is based on negative capacitance
shunting as originally proposed by Forward [12]. In this configuration, a piezoelectric patch is shunted through a passive
circuit connected to a negative impedance converter, so that the internal capacitance of the piezo is artificially cancelled
and the impedance of the shunt circuit reduces to that of the passive circuit. If this impedance is frequency-independent,
i.e., if a resistance is used, broadband damping can be achieved. Although the negative capacitance shunting strategy has
been experimentally validated with success, it must be used with caution since it requires active elements that can
destabilize the structure if improperly tuned. Moreover, the circuit should be tuned very close to the stability limit to
achieve best performance [13].

Application of the foregoing shunting methods is not limited to vibration-only studies. In the past few years, researchers
have investigated the suitability and performance of piezoelectric shunt damping to increase the acoustic transmission loss
in structures. Ahmadian and Jeric [14] and Kim and Lee [15] have compared the sound transmission loss performance of
plates with sound-absorbing material and RL-shunted piezo-patches. Multimode shunt damping with blocking circuit
(Wu’s solution) has been applied by Kim and Kim [16] for noise reduction of a plate in an acoustic tunnel. Kim and Jung
[17,18] also studied broadband reduction of noise radiated by plates with multiple resonant and negative-capacitance-
converter shunt circuits, and achieved good levels of noise attenuation over a limited number of modes.

A rather different approach to broadband vibration attenuation using shunts was proposed by Thorp et al. [19,20] This
concept involves a periodic array of simple RL-shunted piezos mounted on the structure to passively control the
propagation of elastic waves and the subsequent vibration field. Periodically induced impedance-mismatch zones generate
broad stop bands, i.e., frequency bands where waves are attenuated. The tunable characteristics of shunted piezo-patches
allow the equivalent mechanical impedance of the structure to be tuned so that stop bands are generated over desired
frequency ranges. The presence of a shunting resistance (R) generates a damped resonance of the electrical network that
allows the energy dissipation mechanism of shunted piezos to be exploited to dampen the amplitude of vibration also
outside the stop bands. The original periodic shunting concept was numerically demonstrated on rods and fluid-loaded
axisymmetric shells in [19,20]. More recently, this strategy was extended to flat plates [21], where Bloch theorem was used
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to predict the dispersion properties of the resulting periodic assembly. The consistency of the method and its effectiveness
over a broad frequency range have been validated experimentally on a cantilever aluminum plate hosting a periodic layout
of 4 �4 RL-shunted piezo-patches [22].

The present work extends the wave propagation approach presented in [22] to achieve broadband reduction of noise
radiated from a plate in an acoustic cavity. A fully coupled finite element (FE) model is developed to predict the response of
the piezo-structural-acoustic system. The Bloch theorem is applied to predict the dispersion relations and the corresponding
stop bands of the system, and is performed on the in vacuo plate-piezo-patch unit-cell, i.e., neglecting the structural-acoustic
coupling. Such approximation is verified by comparing the frequency bands where the acoustic energy in the cavity is
reduced with those predicted by the unit-cell results. Experimental results are finally presented to validate the concept.

The paper is organized into seven sections including this introduction. Section 2 presents the variational formulation
used to derive a FE approximation of the piezo-structural-acoustic system. In Section 3 the wave propagation
characteristics of in vacuo and fluid-loaded plates are compared and it is demonstrated that the dispersion properties of
the considered structural-acoustic system can be computed, as a first approximation, by neglecting the acoustic coupling.
Section 4 focuses on the description of the FE-based approach for the evaluation of the wave propagation characteristics of
the 2D periodic structure. Section 5 illustrates the concept of structure-borne noise reduction with periodic shunts through
numerical examples and highlights the ability of the unit-cell analysis to predict the frequency regions of noise
attenuation. An experimental validation of the method is described in Section 6. Finally, Section 7 summarizes the obtained
results and provides some conclusions.

2. Piezo-structural-acoustic model

This section illustrates the finite element (FE) formulation adopted for the dynamic response analysis of a piezoelectric
structure coupled with an air cavity. The structure is supposed to be linearly elastic and the piezo-patches are considered
perfectly bonded on one surface of the plate.

Applying classical finite element procedures, the transverse displacement w(x,y) of the plate is discretized with 4-node
Kirchhoff elements while the acoustic cavity is divided into cubic 8-node elements with the sound pressure as the sole
degree of freedom per node [23,24]. Assuming harmonic motion, the equilibrium equations of the discretized acousto-
electro-elastic system are written as
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where d0 denotes the structural degrees of freedom, u0 the electric potential degrees of freedom, and p0 the pressure
degrees of freedom. Also the sub-matrices that compose the coupled system are defines as
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and Bu=DNu, Bf ¼rNf, Bp ¼rNp, where D is the linear differential operator matrix which relates the strains to the
structural displacements.

This general FE formulation is here applied to the flexural vibration of a rectangular thin plate hosting a generic number
of RL-shunted piezos and coupled with a rectangular acoustic cavity that has five rigid walls. The piezoelectric patches are
assumed to have through-thickness polarization with electrodes connected to the top and bottom surfaces. It is also
assumed that the electric potential varies linearly through the thickness, from zero at the bottom surface to fp0 at the top
electrode. Therefore,

f0ðx,y,zÞ ¼f0ðzÞ ¼
z�h=2

hp
fp0 (3)

where h and hp are the plate and piezo-thickness, respectively. Under these assumptions, the electrical equation becomes a
scalar relation of the form

KT
ufd0þkfffp0 ¼ qe0 (4)

where qe 0 is the external harmonic charge at the electrodes and it is related to the potential fp0 by the impedance of the
shunting circuit ZSHðoÞ ¼ Rþ joL:

fp0 ¼ joZSHðoÞqe0 (5)
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In Eq. (5) R is the resistance and L is the inductance of the circuit. Substituting Eq. (5) into Eq. (4) and then back into Eq. (1)
yields
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where
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is the shunting matrix.

3. Frequency wavenumber comparison between in vacuo and fluid-loaded pates

First, an attempt is made to gain insights about the dispersion properties of the coupled plate-cavity system. The
variation of natural frequencies and mode shapes for different plate-enclosure configurations is analyzed in order to
estimate the influence of the acoustic coupling on the dispersion properties of the structure. The goal is to demonstrate
that the wave propagation characteristics of the considered piezo-structural-acoustic system may be estimated, as a first
approximation, by simply neglecting the acoustic coupling. As illustrated in Section 4, this will allow for an efficient
calculation of the dispersion properties of the system based on the unit-cell analysis approach conducted on the in vacuo

plate.
The considered host structure consists of a rectangular fully clamped aluminum plate measuring 600�400 �1 mm.

The panel hosts a periodic array of 4�4 square piezoelectric patches perfectly bonded to one side (see Fig. 5(a)). The
geometric and material properties of the plate and piezo-patch are illustrated in Tables 1 and 2. The plate can be
considered as the result of a 4�4 assembly of unit cells measuring 150�100 mm. During this analysis, the piezo-shunts
are maintained in the short circuit configuration, i.e., ZSH-0, in order not to introduce any complexity of the electrical
impedance in the dynamic stiffness matrix formulation of Eq. (6).

Numerical simulations are carried out for two different cavity configurations as illustrated in Fig. 1: first the smart plate
is placed at the top of a rectangular shaped air cavity, denoted as cavity 1, of dimensions 600�400�500 mm. Second, a
smaller enclosure, here denoted as cavity 2, with sides 600�400 �200 mm, is also considered in order to verify the
effectiveness and robustness of the present approach. The remaining five walls of the considered cavities are assumed to be
rigid.

Comparing the natural frequencies of the uncoupled and coupled plate–cavity system, part of which are summarized in
Table 3, it is possible to observe that modes ‘‘controlled’’ by the vibration of the plate have natural frequencies slightly
lower than those of the uncoupled plate modes. Similarly, the natural frequencies of the modes ‘‘controlled’’ by the
acoustic vibrations in the enclosure are slightly higher than those of the corresponding uncoupled cavity modes. In either
case the variation of the frequencies is modest and in this specific case never exceeds 1.0 percent. The comparison between
the in vacuo and fluid-loaded panel-controlled mode shapes is then considered in order to estimate the change of the
Table 1
Geometry and physical properties of the clamped plate.

Parameter Value

Dimensions 600.0 �400.0 mm2

Thickness 1.0 mm

Mass density 2730 kg/m3

Young’s modulus 7.0 �1010 N/m2

Poisson’s ratio 0.33

Table 2
Geometry and physical properties of the square piezoelectric patches.

Parameter Value

Dimensions 50.0 �50.0 mm2

Thickness 0.5 mm

Mass density 7800 kg/m3

Young’s modulus 6.25 �1010 N/m2

Poisson’s ratio 0.40

Piezoelectric stress constant �6.6 N/V m
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Fig. 1. Sketch of the considered acoustic boxes: (a) cavity 1 and (b) cavity 2. The lateral and bottom walls are rigid.

Table 3
Natural frequencies of the in vacuo and fluid loaded plate in the frequency range of interest (400–900 Hz).

in vacuo plate Rigid-walled cavity Coupled system

Mode Frequency Mode Frequency Mode Frequency

22 406.11 25 404.20

4 425.68 26 427.24
23 437.99 27 436.17

5 443.79 28 445.17
24 450.69 29 448.93

25 457.73 30 456.19

26 466.04 31 464.58

27 486.49 32 485.28

28 504.57 33 503.11

6 511.47 34 512.32
29 516.98 35 514.98

30 529.37 36 527.78

31 531.57 37 529.61

32 542.60 38 541.17

7 545.67 39 547.64
33 555.30 40 553.43

8 568.29 41 569.57
34 615.52 42 613.86

9 614.94 43 616.49

In bold are highlighted the cavity controlled modes of the coupled system.

F. Casadei et al. / Journal of Sound and Vibration 329 (2010) 3632–36463636
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wavenumber induced by the acoustic coupling at a certain frequency. In particular, the modal assurance criterion (MAC) is
used as a measure of the agreement between the two sets of modes in the 500–700 Hz frequency range. The MAC matrix,
illustrated in Fig. 2(a), shows a nearly diagonal behavior indicating that the mode shapes, and hence the associated
wavenumbers, of the two systems are virtually the same. Similar conclusions hold for the case in which the same plate is
coupled with the smaller enclosure as shown in Fig. 2(b).

As illustrated in Fig. 4 the shapes of panel-controlled natural modes are similar to the in vacuo plate modes and the
associated cavity mode is slightly perturbed at the interface region to conform with the displacement of the structure. On
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Fig. 2. Modal assurance criterion (MAC) between in vacuo and coupled plate controlled modes in the 500–700 Hz range: (a) coupling with cavity 1 and

(b) coupling with cavity 2.
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Fig. 3. (a) Deformed shape of the in vacuo plate mode 32 (fn=542 Hz), (b) corresponding cavity-controlled mode when coupled with cavity 1 (fn=547 Hz),

and (c) coupled with cavity 2 (fn=541 Hz).
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the other hand, in the case of cavity-controlled modes, visualized in Fig. 3, the displacement of the structure is significantly
distorted to match the pressure distribution of the enclosure.

From these results it can be inferred that only in the case of panel-controlled coupled modes the frequency
wavenumber relation of the structure is not significantly altered by the coupling with air cavities, while in the vicinity of
cavity-controlled natural frequencies the presence of the enclosure may affect the dispersion properties of the structural
waveguide. According to these observations, the dispersion relations of the plate may be computed neglecting, as a first
approximation, the loading effect of the fluid into the cavity. The reason for this approximation is two-fold: (1) as shown in
Table 3, the modal density of cavity-controlled modes is small relative to structure-controlled modes, and (2) inaccuracies
due to this approximation will arise only in the vicinity of cavity-controlled natural frequencies where in any case low
control authority can be achieved by means of a mechanical action on the plate [25].
4. Wave propagation in periodic plates

Without the fluid loading effect, wave propagation in 2D periodic structures can be investigated through the analysis of
a unit cell (see Fig. 5(b)) and the application of Bloch theorem [26]. This would have been unfeasible if also the
complexities introduced by the acoustic coupling in the dynamic stiffness matrix of the system were considered.
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Fig. 4. (a) Deformed shape of the in vacuo plate mode 42 (fn=707 Hz), (b) corresponding panel-controlled mode when coupled with cavity 1 (fn=704 Hz),

and (c) coupled with cavity 2 (fn=704 Hz).
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Fig. 5. Schematic of the finite element discretization of a periodic plate (a) and corresponding unit cell (b).
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According to what derived in the previous sections, the unit-cell’s equation of motion for the piezo-plate without
acoustic coupling can be expressed as

KDðoÞd¼ f (8)

where

KDðoÞ ¼Kuu�o2MuuþSZSH
ðoÞ (9)

is the dynamic stiffness matrix and d and f are vectors of generalized nodal displacements of the cell and associated forces,
respectively. As shown in Fig. 5, the nodal displacements and forces of each cell have been divided according to their
relative position in the cell (L—left, R—right, T—top, B—bottom, I—internal). Imposing periodicity conditions on the
displacements and equilibrium conditions on the forces yield

d¼AdðrÞ and f ¼ BfðrÞ (10)

where

dðrÞ ¼ ½dL dB dLB dI�
T (11)

fðrÞ ¼ ½fL fB fLB fI�
T (12)
-1 +10

Fig. 6. (a) Operative deformed shape of the coupled panel-cavity system at frequencies close to a cavity-controlled mode (fn=549 Hz), and (b) a panel-

controlled mode (fn=603 Hz).
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are vectors of reduced order. The matrices A and B are functions of the frequency-dependent propagation constants mx and
my defined as

mk ¼ dkþ iek ðk¼ x,yÞ (13)

The existence of a real part of the propagation constant indicates that amplitude attenuation occurs as the elastic wave
propagates from one cell to the next. For this reason the term dk is called attenuation constant [26]. Substituting Eqs. (10)
into Eq. (8), pre-multiplying the resulting equation by AH, with H denoting the Hermitian operator, and assuming fI=0
yields

KðrÞD ðl,oÞdðrÞ ¼ 0 (14)

where l is the wave vector and KD
(r) is the reduced dynamic stiffness matrix of the unit-cell. Eq. (14) defines an eigenvalue

problem whose solution for assigned l yields the corresponding frequency o of wave propagation:

o¼oðlÞ (15)

Eq. (14) can be solved by specifying the frequency o and one of the two wavenumbers and solving for the other, as
presented by Spadoni et al. [21].
Fig. 7. (a) Attenuation constant dx , (b) acoustic kinetic energy inside cavity 1, (c) acoustic kinetic energy inside cavity 2. The RL shunt circuits are tuned

at 700 Hz.
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5. Numerical analysis of the performance of periodic plate

Numerical results are presented here to assess the method previously outlined. Propagation constants of the periodic
piezoelectric plate are evaluated in conjunction with the total kinetic energy of the fluid in the cavity to show the ability of
the unit-cell analysis to predict the actual frequency bands of noise reduction. The short circuit configuration, i.e., ZSH-0, is
used as a reference to compare the effects of the shunting circuits.

The host structure consists of a rectangular fully clamped isotropic plate with a periodic array of 4�4 RL-shunted
square piezoelectric patches perfectly bonded on one side (see Fig. 5(a)). The geometric and material properties of the plate
and piezos are illustrated in Tables 1 and 2. The unit cell features side lengths of 150�100 mm. The flexible structure is
forced to vibrate by a point harmonic disturbance located near the lower left corner. Numerical simulations are carried out
for the two cavity configurations already considered in Section 3. The total kinetic energy of the fluid, defined as

T ¼
1

2
r0/

TKpp/ where q/=qt¼�
1

r0

p (16)

is used as a global measure of the sound radiated by the vibrating plate [24]. The FE mesh of the coupled fluid–structure
domain includes 384 quadrilateral plate elements and 3840 hexahedral acoustic elements when dealing with the first
cavity, and 1920 hexahedral elements for the smaller cavity.

Unit cell analysis is conducted with shunt circuits tuned at ftun=700 and 1000 Hz, and for two different values of
resistances: R¼ 100 and 500O. According to Hagood and Von Flotow [8], for a given frequency ftun, the inductance required
Fig. 8. (a) Attenuation constant dx , (b) acoustic kinetic energy inside cavity 1, (c) acoustic kinetic energy inside cavity 2. The RL shunt circuits are tuned at

1600 Hz.
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to tune an RL-shunt circuit is given by

L¼
1

Cpo2
tun

(17)

where Cp is the inherent capacitance of the piezo-patch and otun ¼ 2pftun is the tuning frequency. In this work, the
selection of the frequencies of attenuation has been driven by the general need to reduce tonal noise components in
the bandwidth from 500 to 2000 Hz, which typically characterize the spectrum of structure-borne noise in rotorcraft
cabins [27].

Fig. 7(a) shows the variation of the real part of the propagation constant dx over the 400–900 Hz range when the
shunted circuits are tuned at 700 Hz. As previously stated, attenuation zones are identified by the range of frequencies
where the attenuation constant is non-zero. A first attenuation frequency range is shown to be centered around 540 Hz. It
remains approximately the same for all circuit configurations and can be attributed to the impedance mismatch generated
by the added mass and stiffness of the piezo-patches. In addition, a significant attenuation region can be identified near the
shunt tuning frequency covering the range from 550 to 800 Hz. This second range of attenuation is visible only in the
closed-circuit configuration and therefore can be associated with the presence of the RL-shunt circuit. The location of this
additional attenuation region can be selected by simply varying the inductance of the electrical network without the need
to modify the configuration of the structure. Furthermore, it is interesting to observe how the value of the shunted
resistance affects the shape of the attenuation bands. From Fig. 7(a) it can be observed that increasing the value of the
shunted resistance extends the width of the attenuation region along with a reduction of the maximum attenuation value.
This variation can be easily explained by observing that, for the circuit under consideration, the resistance acts as the
dissipative term of an equivalent second-order system with resonant frequency regulated by the inductance and
capacitance values. The predictions of the unit-cell analysis performed on the periodic structure in vacuo are evaluated by
computing the harmonic response of the system when the plate is coupled with the enclosure. Fig. 7(b) shows the variation
of the total kinetic energy of the fluid in the cavity over the frequency range 400–900 Hz for a tuning at 700 Hz. The short-
circuit response is compared with the acoustic response for the two values of shunting resistance. The result confirms that
substantial sound radiation reduction is achieved in the frequency ranges predicted by the unit-cell analysis performed on
the system in vacuo. The location of stop bands in the system frequency response is almost unaffected by the structural-
acoustic coupling, which indicates the effectiveness and robustness of the proposed method. According to what observed
in the variation of attenuation constants, the amount of noise attenuation depends upon the resistance value of the RL-
shunt circuit. Note also that the cavity-controlled modes contained in the attenuation zones are only slightly reduced while
the panel-controlled modes are almost completely attenuated. In Figs. 7(b) and (c) the cavity-dominated natural
frequencies are highlighted with vertical lines in order to better visualize this idea. Since the present solution is tailored to
structural waves, it is effective on panel-controlled modes where most of the energy of the coupled system is stored as
structural vibration energy [25].Other control mechanisms should be devised for cavity-dominated modes. Fig. 6
demonstrates the same concept by showing the operative deformed shape of the coupled system when the shunt circuits
are tuned at 700 Hz with a resistance of 100O. In particular, Fig. 6 shows that at frequencies close to cavity-controlled
Fig. 9. Photo of the experimental setup.
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modes the response is moderately affected by the effect of the shunt circuits while significant attenuation can be achieved
in the vicinity of panel-controlled modes.

Similar results are presented in Fig. 8 for a tuning frequency of 1600 Hz. The first attenuation zone in the propagation
constant plot is present around 1270 Hz and approximately does not change for all the shunting circuits. This fact confirms
that it is to be attributed to the impedance mismatch of the piezos in the short-circuit configuration. A second range of
attenuation over the 1300–2000 Hz interval is obtained through piezo-shunts. The predictions based on the in vacuo

analysis are confirmed by looking at the reduction in the acoustic response of the enclosure. Tuning the RL circuits at
higher frequencies introduces a very significant broadband effect since bandwidth increases with the resonant frequency
of the considered shunting strategies.
6. Experimental test

This section introduces the design and testing of the periodic smart plate. An aluminum plate with the same geometric
properties listed in Table 1 is clamped to a rigid frame fastened to a wooden supporting structure of dimensions 700
�500 mm. The resulting assembly is then fixed to a wooden box of depth 1200 mm as illustrated in Fig. 9. The plate is
equipped with 16 PZ21 piezoelectric patches (from Ferroperm Piezoceramics) arranged in a regular 4�4 array. Broadband
noise in the cavity is generated through a mechanical shaker connected to the flexible plate at point (100,80) mm from the
lower left corner. A microphone rack placed in the enclosure facing the plate at a distance of 320 mm maps the related area
with a 5 by 4 regular grid.
Fig. 10. (a) Attenuation constant dx and experimental pressure response functions at locations; (b) 1–(150,150) mm; (c) 2–(520,150) mm.
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Results are presented for a tuning frequency of 1600 Hz and two different shunting resistances: R¼ 47 and 100O.
According to Eq. (17) and the measured value of the piezo-patch capacitance, the required shunting inductance in this case
is L=79.464 �10�3 H. A synthetic inductor as proposed by Antoniou [28] is used in the shunting circuits. The equivalent
inductance of the circuit is given by

Leq ¼
Z1Z3Z4Z5

Z2
(18)

where Z1=R1, Z2=R2, Z3=R3, Z4 ¼ 1=ðjoCÞ and Z5=R5 from which it is evident that different inductance values can be easily
obtained by simply varying one resistor of the circuit. The components used to obtain the required inductance for the case
here considered are the following: R1 ¼ 22 kO, R2 ¼ 1000 kO, R3 ¼ 10 kO, R5 ¼ 3612O and C=100 nF. Fig. 10(a) shows the
variation of the attenuation constant dx as calculated from the FE unit-cell analysis of the experimental smart plate over
the 1200–1800 Hz range. Two attenuation zones are predicted by the model. The first, between 1250 and 1300 Hz, is due to
the added mass and stiffness of the piezo. The second zone is generated when the piezos are shunted with RL circuits and is
approximately centered around the RL-shunt tuning frequency. Significant attenuation is expected between 1450 and
1700 Hz for lower values of the resistance component.

The numerical predictions of the unit-cell analysis are compared with the pressure response functions measured by the
microphones mounted inside the box. Only a small set of measurements are illustrated here as representative of the cavity
noise reduction. In particular, Fig. 10 shows the frequency response of two acoustic transducers in response to the
excitation introduced by the shaker. Details about sensor locations are reported in the figure caption. The short-circuit
responses are compared with the acoustic responses for the two values of shunting resistance. The results are in fairly good
agreement with the numerical analysis. Broadband noise reduction is obtained over the attenuation zones predicted by the
model. Higher performance are achieved near the RL-shunt tuning frequency and with the lowest value of the resistance,
where a maximum 12 dB reduction of the pressure level is achieved. Note that the experimental acoustic response inside
the box is relatively well damped even with short-circuited piezos. However, the solution proposed in this work can attain
further significant improvements over tunable frequency bands.
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Fig. 11. Spatial pressure distribution at different frequencies. Comparison between the short circuit case (a), (c) and closed circuit case with shunting

resistance R¼ 47O (b), (d).
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Figs. 11(a) and (b) illustrate two maps of the spatial pressure distribution at 1600 Hz obtained with the simultaneous
use of all the microphones data. In particular, a comparison between the short and shunted circuits is made in order to
appreciate the spatial effect of this control strategy. Similarly, Figs. 11(c) and (d) show the spatial pressure map at 1430 Hz
and testifies that noise attenuation may also be achieved far from the tuning frequency.

7. Conclusions

The tuning capabilities of simple RL shunt circuits are combined with filtering characteristics of periodic structures to
obtain a tunable periodic plate. The resultant smart structure experiences significant reductions in its noise radiation
capability. Numerical simulations demonstrate the applicability of Bloch theorem for unit-cell analysis on the in vacuo

plate as a tool to predict the frequency ranges of effective structural acoustic control. Finally, experiments are performed to
validate the numerical predictions, and to demonstrate the effectiveness of the proposed strategy.
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